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Abstract The dynamics of coupled populations have mostly been studied in the context of metapopu-
lation viability with application to, for example, species at risk. However, when considering pests and
pathogens, eradication, not persistence, is often the end goal. Humans may intervene to control nuisance
populations, resulting in reciprocal interactions between the human and natural systems that can lead to
unexpected dynamics. The incidence of these human-natural couplings has been increasing, hastening
the need to better understand the emergent properties of such systems in order to predict and manage
outbreaks of pests and pathogens. For example, the success of the growing aquaculture industry depends
on our ability to manage pathogens and maintain a healthy environment for farmed and wild fish. We
developed a model for the dynamics of connected populations subject to control, motivated by sea louse
parasites that can disperse among salmon farms. The model includes exponential population growth with
a forced decline when populations reach a threshold, representing control interventions. Coupling two
populations with equal growth rates resulted in phase locking or synchrony in their dynamics. Popula-
tions with different growth rates had different periods of oscillation, leading to quasiperiodic dynamics
when coupled. Adding small amounts of stochasticity destabilized quasiperiodic cycles to chaos, while
stochasticity was damped for periodic or stable dynamics. Our analysis suggests that strict treatment
thresholds, although well intended, can complicate parasite dynamics and hinder control efforts. Syn-
chronizing populations via coordinated management among farms leads to more effective control that is
required less frequently. Our model is simple and generally applicable to other systems where dispersal
affects the management of pests and pathogens.
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1 Introduction

As the global human population grows, there is an increasing need to understand how interactions be-
tween human and natural systems alter ecosystems and the services they provide (Millennium Ecosystem
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Assessment 2005). Social and ecological systems have traditionally been studied separately, but their
integration as coupled human and natural systems (CHANS) can reveal unexpected dynamics due to non-
linearities and thresholds in the way that humans and ecosystems interact (Liu et al 2007). CHANS can
exhibit emergent properties, not present in isolated human or natural systems but resulting from the inter-
actions between them. There is a need to integrate studies of human actions with the natural dynamics of
populations and communities to understand relevant feedbacks and develop effective policy that reduces
human degradation of essential ecosystems services.

The natural dynamics of pests and pathogens have been of interest to scientists for some time, due
to the economic importance of agricultural pests (Oerke 2006) and human cost of transmissible diseases
(Keeling and Gilligan 2000, e.g.,). The role of dispersal among populations in hindering control efforts
has long been recognized (Levins 1969, e.g.,). Theoretical models of coupled populations have shown
that if neighbouring populations fluctuate out of phase, such that high abundances at one location corre-
spond to low abundances at another, dispersal can increase the probability of persistence via the rescue
effect (Brown and Kodric-Brown 1977; Kendall and Fox 1998). The rescue effect is often thought of as
beneficial in the context of population viability of endangered species, but in the context of disease, dis-
persal among local populations with asynchronous dynamics may hinder efforts to eradicate disease (e.g.,
Bolker and Grenfell 1996). Mathematical models (e.g., Liebhold et al 2004; Holt and McPeek 1996; Hast-
ings 1993) and observational data (e.g., Ranta et al 1995; Steen et al 1996) have suggested that dispersal
will tend to synchronize local populations. Synchronized populations are more susceptible to extinction
because stochastic events or human intervention can cause catastrophic losses when all populations are at
low abundance, with little opportunity for recolonization. Paradoxically, dispersal could therefore help or
hinder efforts to control disease in metapopulations depending on whether dispersal results in synchro-
nized pathogen dynamics, or the rescue effect (Abbott 2011).

Treatments with chemotherapeutants and wildlife culls (e.g., to reduce disease transmission) are ex-
amples of control efforts that result in an immediate decline in the unwanted populations, but resurgence
may be swift if nearby populations persist. The optimal allocation of control effort among subpopulations
may depend on the level of connectivity and relative growth rates of the populations. For example, in
control of the yellow legged herring gull, a nuisance species in the western Mediterranean, the magnitude
of the cull and life stage to be targeted depends on the dispersal rate (and relative growth rates) among
gull populations (Brooks and Lebreton 2001). Tuberculosis in New Zealand possums can be controlled by
culling infected individuals with poison baits, but the effectiveness of this control depends on the timing
of application and spatial configuration of habitat patches (Fulford et al 2002). In general, asynchrony in
the dynamics of disease among host local populations likely decreases the probability of successful erad-
ication (Earn et al 1998). Indeed, it has been proposed that efforts to eradicate measles on a global scale
were hampered after vaccination programs of the late-1960s inadvertently resulted in the decorrelation of
measles epidemics in UK cities (Bolker and Grenfell 1996).

The motivation for this study came from parasite dynamics in open-net aquaculture; a coupled hu-
man and natural system where the eradication of pathogens has proved difficult. The rapid expansion of
aquaculture (FAO 2014) has resulted in changes to coastal ecosystems including the emergence of dis-
ease (Walker and Winton 2010) and transmission of pathogens between farmed and wild fish (Heggberget
et al 1993). In regions where farmed and wild fish coexist, the health of the system depends on effective
management of disease in farmed fish (Peacock et al 2013; Tompkins et al 2015). Connectivity among
populations in the marine environment is typically higher than in terrestrial systems (McCallum et al
2003), and dispersal of pathogens among host populations can complicate disease control.

In particular, parasitic copepods known as sea lice or salmon lice, predominantly Lepeophtheirus
salmonis and Caligus spp., have been a persistent problem in salmon aquaculture, costing millions of
dollars in treatment and reduced feed conversion ratios, negatively impacting fish health, and damaging
public perception of farmed salmon (Costello 2009). Many approaches have been taken to minimize
sea louse outbreaks, including biomass restrictions to limit host density, strategic siting of farms, the
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use of cleaner fish that prey on sea lice, and the application of chemotherapeutants (Rae 2002; Brooks
2009). Sea louse populations on salmon farms within a region are connected via the dispersal of free-
living larvae (Adams et al 2012), and studies have shown that critical host density thresholds for sea
lice exist at regional scales (Frazer et al 2012; Jansen et al 2012; Kristoffersen et al 2013). It has been
estimated that 28% of infections are due to the influx of larvae from neighbouring farms (Aldrin et al
2013). This connectivity among farms affects the growth of sea louse populations on any given farm
and the efficacy of treatments. Furthermore, frequent and less effective use of chemotherapeutants may
facilitate the evolution of resistance in sea lice (Aaen et al 2015), which is a major challenge facing
the aquaculture industry (Igboeli et al 2014). Coordination of management among farms may be key in
effectively managing sea lice (Kristoffersen et al 2013), as well as the spread of other pathogens. Many
studies have focused on statistical analyses of monitoring data to uncover the relationships among farms
(e.g., Jansen et al 2012; Aldrin et al 2013; Rogers et al 2013; Revie et al 2002) but much can be learned
from applying more general theoretical models of population and disease dynamics (e.g., Frazer et al
2012).

In this paper, we develop a simple model for the dynamics of two populations connected by dispersal,
where each population is subject to external control when it reaches a threshold density. The model
complements previous work examining sea louse populations on individual salmon farms (Krkošek et al
2010; Rogers et al 2013) and within a region (Jansen et al 2012; Aldrin et al 2013) to explicitly examine
how connectivity between parasite populations on adacent farms can alter the timing and frequency of
treatments. This work also builds on our general theoretical understanding of how dispersal (Hastings
1993; Goldwyn and Hastings 2011; Dey et al 2015; Kendall and Fox 1998) and intervention (Chau 2000;
Sah et al 2013) affect the dynamics of coupled populations. The model was motivated by sea lice on
farmed salmon, but has general applicability to other systems where dispersal affects control, such as in
agricultural pests of crops within a region (Ives and Settle 1997), and transmissible diseases in wildlife
(Tompkins et al 2015) and humans (e.g., Bolker and Grenfell 1996).

2 Methods

2.1 A simple model for growth and control

Analyses of sea louse population dynamics on isolated salmon farms suggest that parasite populations
grow exponentially in the absence of treatment (Krkošek et al 2010; Rogers et al 2013). Exponential
growth is not unique to sea lice, and has been observed in birds (Van Bael and Pruett-Jones 1996), mam-
mals (Silva 2003), and insects (Birch 1948), and has been used to describe dynamics of other agricultural
pests (e.g., Samways 1979). Although negative density dependence will regulate populations at some
point, management intervention in the case of pests and parasites may prevent populations from reaching
such high densities. Thus, although the following model was motivated by sea louse parasites on salmon
farms, it likely has broad applicability and may inform management of other pests and parasites. In de-
veloping the model, we refer to populations in adjacent patches rather than parasites on adjacent salmon
farms to maintain this generality.

The dynamics of two populations that are continuously coupled by dispersal are described by,[
u
v

]′
=

[
ruu ruv
rvu rvv

] [
u
v

]
, (1)

where u is the population density in patch one, v is the population density in patch two, rii is the internal
growth rate of population i where i = u or v and rij is the connectivity probability from population j to
population i. We refer to the total growth rate of population i = u or v as the row sum of internal growth
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and connectivity: rii + rij . The solutions for u(t) = fu(t, u0, v0) and v(t) = fv(t, u0, v0) are given in
Appendix A.

We included control treatments by forcing a reduction in a population when it reached the threshold
abundance of Nmax. Many countries, including Norway, Ireland, the United States, and Canada, require
salmon farms to treat their fish with chemotherapeutants when a threshold sea louse abundance is reached,
but this threshold may vary among regions (Brooks 2009). For our simulations, we choseNmax = 3 motile
lice per fish, based on guidelines in Pacific Canada that recommend treatment when farmed salmon have
an average of three lice per fish (British Columbia Ministry of Agriculture and Lands 2005), but the
value of the threshold is arbitrary for the qualitative analysis we perform here. Observations suggest
that chemotherapeutants may kill up to 95% of motile sea lice on treated farmed salmon (Lees et al
2008), although treatment efficacy may be lower in many regions and is undoubtedly changing (Aaen
et al 2015). We assumed that treatments were effective, and when either u(t) or v(t) exceeded Nmax, we
modelled a treatment of that population by forcing the dynamics to reset with the initial condition for
the treated population being a 95% reduction from the threshold (i.e., Nmin = (1 − 0.95)Nmax), and the
initial condition for the untreated population being equal to the density prior to treatment of the other
population. For example, starting with initial population densities uk and vk at t = 0, if u(t) reaches the
threshold Nmax at time t = Tu, the system would be reset with t = 0 and initial conditions uk+1 = Nmin
and vk+1 = fv(Tu, uk, vk). The subscript k here represents the treatment number counted across both
populations. In the following section, we develop a discrete-time model that describes the population
density at treatment k + 1 based on the population density at treatment k.

2.2 Discrete-time treatment dynamics

We aimed to understand the conditions under which the populations will become synchronized, settle
into a regular pattern of alternating treatments, or have unpredictable treatment timing. To this end, we
reduced the dimensionality of the system while retaining key properties (Schaffer 1985) by deriving a
discrete-time map for the population density in a focal population when the other population is treated.
This approach is related to “peak to peak” dynamics of time series data in which past maxima are used
to predict future peaks in time-series oscillations (e.g., Rinaldi et al 2001). A similar approach is also
often used to reduce the dimensionality of a system of three or more differential equations by plotting
successive points where the three-dimensional phase dynamics pass through a two-dimensional plane,
called a Poincaré section (e.g., Hastings and Powell 1991; Schaffer 1985).

Given the initial population densities in the two patches, we solved Eq. (1) for the time, Tu, until
population u reaches the treatment threshold (Appendix A) and the time, Tv , until population v reaches
the treatment threshold. We calculated T̃ = Tu − Tv , where T̃ < 0 indicates that the treatment of u will
happen next, and T̃ > 0 indicates that the treatment of v will happen next. The population densities after
the next treatment k + 1 are therefore[

u
v

]
k+1

=
(
1−H(T̃ )

)[ Nmin

fv

(
Tu, uk, vk

)]
︸ ︷︷ ︸

u is treated

+H(T̃ )

[
fu

(
Tv, uk, vk

)
Nmin

]
︸ ︷︷ ︸

v is treated

, (2)

where H(T̃ ) is the Heaviside step function that equals zero when T̃ < 0 and one otherwise. We used the
dynamical system described by (2) to construct a return map that takes the u when v is initially treated,
u∗, and returns u the next time v is treated, φ(u∗). We refer to φ(u∗) as the population density (in patch
one) at re-treatment (of patch two). We show in Appendix B that the general equation for this return map
is
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Table 1 Summary of scenarios for how increasing connectivity affects dynamics.

Scenario
Growth rates

u internal v internal from u to v from v to u
ruu rvv rvu ruv

A 1.00 1.00 0.01→ 1.00∗ 0.01→ 1.00∗

B 1.00 1.00 0.01→ 1.00 0.01
C 1.00 0.50 0.01→ 1.00 0.01→ 1.00
D 1.00 0.50 0.01→ 1.00 0.01

*Under scenario A, we considered connectivity increasing to 2.00 when assessing the frequency of treatments.

φ(u∗) = H(T̃0) fu

(
Tv0, u

∗, Nmin

)
︸ ︷︷ ︸

m=0

+

[ ∞∑
m=1

H(T̃m)

m−1∏
n=0

[1−H(T̃n)]

]
fu

(
Tvm, Nmin, vm−1

)
︸ ︷︷ ︸

m≥1

, (3)

where treatment of u occurs m times before v is treated again. The time between treatment m−1 and the
next treatment of v is denoted Tvm, and T̃m = Tum−Tvm. The value ofm depends on the relative growth
rates of the two populations and the magnitude of connectivity. The values of Tum and Tvm cannot be
solved for explicitly (Appendix A), therefore we simulated the dynamics using a recursive algorithm to
obtain the shape of φ(u∗) (Appendix C).

2.3 Parameter sensitivity

We investigated the dynamics of the return map for a limited number of parameter combinations with
each growth rate constrained between zero and two. A comprehensive description of the dynamics of the
return map under all parameter combinations was impossible because the return map had to be simulated,
so we focused on results from four scenarios that describe parameter changes that might occur in networks
of salmon farms (Table 1). First, we considered a scenario where the internal growth rates were constant
and equal at ruu = rvv = 1.00 and connectivity increased from 0.01 to 1.00 in increments of 0.01
(ruv = rvu = rij , scenario A). This scenario could represent two salmon farms being brought closer
together, increasing exchange of parasites between them. Second, we considered increasing rvu from
0.01 to 1.00, but connectivity in the other direction constant at ruv = 0.01 (scenario B). This scenario
could represent an increase in the advection of larvae from one farm to another. The third scenario had
connectivity equal and increasing as in scenario A, but u had twice the internal growth rate as v (ruu =
1.00, rvv = 0.50, scenario C). Similarly, in scenario D, u had twice the internal growth rate as v, but
rvu increasing from 0.01 to 1.00. Different internal growth rates could represent different host population
sizes or environmental conditions affecting growth on the two farms.

In each scenario, for each value of the appropriate control parameters (i.e., rvu, and ruv in scenarios
A & C; Table 1), we simulated the return map over 2000 iterations starting at u∗0 = 2.7. We constructed a
bifurcation diagram by plotting the values of φ(u∗) for the last 500 iterations, over the value of the control
parameter. We present the results for u∗0 = 2.7, but we examined the bifurcation diagrams starting from
several values of u∗0 to check that the long-term dynamics were not dependent on the initial conditions
(Online Resource, Fig. S1).

We also considered the long-term frequency of treatments over increasing connectivity between pop-
ulations. To calculate the frequency of treatments, we first iterated the return map 500 times starting at
u∗ = 2.7 to remove transient dynamics and then simulated the dynamical system given by Eq. 2 for 100
treatments, where treatments were counted across both populations. If the two populations were treated at
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the same time, we considered it two treatments. The frequency of treatments was then calculated as 100
divided by the time taken to reach 100 treatments. To examine how connectivity affects the frequency of
treatments independent of overall increases in the growth rates, we also considered a variation on scenario
A in which the internal growth rate declined as connectivity increased such that rii = 1 − rij and the
total growth rates to populations remained constant (Online Resource).

2.4 Testing for chaos

Under certain parameter values, the numerically-calculated return map given by Eq. (3) had a discon-
tinuity at the point where u was treated m times or m + 1 times, depending on the population density
u∗ at the first treatment of v (see Results). This discontinuity resulted in cyclic behaviour that was dif-
ficult to classify by numerical simulations as periodic or chaotic (Galvanetto 2000). Chaos is extreme
sensitivity to initial conditions, and can be classified by calculating the rate of divergence between two
trajectories that are initially close (Hastings et al 1993). This rate is known as the Lyapunov exponent λ
where εn = ε0 e

λn, ε0 << 1, and εn is the difference between a perturbed and fiducial trajectory after
n iterations of the return map. Positive exponents indicate that two trajectories will diverge and therefore
the dynamics are sensitive to the initial condition, characteristic of chaos (Sprott 2003; Hastings et al
1993).

To determine if the return map lead to chaotic dynamics under the scenarios we considered, we nu-
merically calculated the Lyapunov exponent for all parameter combinations (Table 1) as,

λ =

104∑
n=1

log
(
|εn|
ε0

)
. (4)

For discontinuous return maps such as ours, Eq. (4) is not valid if the fiducial and perturbed trajectories
project onto different pieces of the return map (Galvanetto 2000). To avoid this problem, we chose a
small initial difference between the trajectories of ε0 = 10−8. At each iteration of the return map, we
readjusted the two trajectories bringing them back together along the line of separation such that the
difference between them was ε0, with the sign of the difference equal to the sign of εn−1 (Sprott 2003, p.
116-117):

εn = φ

(
φn−1(u∗) +

εn−1
|εn−1|

ε0

)
− φn(u∗) (5)

where φn(u∗) represents the nth iteration of the fiducial trajectory (i.e., φ2(u∗) = φ(φ(u∗))). This cor-
rection made it very unlikely that the two trajectories would project onto different pieces of the return
map, as the difference between them remained relatively small. In all our simulations, we verified that
εn << 1, suggesting that the two trajectories had projected on to the pieces of the return map.

In the numerical calculation, the value of the Lyapunov exponent may depend on the choice of u∗0
(Earnshaw 1993), so we repeated the calculation of Eq. (4) for three randomly-chosen values between
Nmin and Nmax. For each starting value, we iterated the map 200 times to remove transient dynamics and
then used the subsequent 10 000 iterations in the calculation of λ (Sprott 2003). We report the mean value
of λ over the three values of u∗0 for each value of connectivity described in section 2.3.

2.5 Stochasticity

Environmental stochasticity may influence the growth of populations, as is the case for sea louse pop-
ulations on salmon farms (Aldrin et al 2013; Rogers et al 2013). We added stochasticity to the return
map and evaluated its influence on the long-term dynamics. At each iteration, we multiplied φ(u∗) by a
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log-normal distribution with mean one and standard deviation on the log scale of s = 10−2 (Hilborn and
Mangel 1997). We compared the stochastic dynamics for parameters that corresponded to a quasiperi-
odic cycle with a Lyapunov exponent close to zero in the deterministic model versus those that produced
periodic dynamics or had a single equilibrium with a Lyapunov exponent that was relatively large and
negative in the deterministic model. We examined 200 iterations of the return map for two trajectories:
one fiducial trajectory starting at u∗0 = 2.7 and a second perturbed trajectory initially separated by a small
distance ε0 = 10−8 from the fiducial trajectory. We compared the difference between these trajectories
over increasing iterations and also calculated the Lyapunov exponent, with and without stochasticity in
the model. In calculating the Lyapunov exponent for the stochastic return map, we used an independent
sequence of log-normal values for the fiducial and perturbed trajectories. To ensure the value of λ in
the stochastic model was not sensitive to the particular log-normal random values in the simulation, we
repeated the calculation 50 times and report the mean and range.

3 Results

3.1 Simulations of simple model

Simulations of the model predicted that for two isolated populations (i.e., rij = 0 ∀ i 6= j), each popula-
tion will oscillate with treatments occurring at regular intervals. The frequency of treatments was dictated
by the internal population growth rate rii, with higher growth rates resulting in more rapid resurgence of
the population after treatment and therefore a higher frequency of treatments.

When we coupled the two populations, the dynamics were more complex. Simulations displayed a
range of behaviour including alternating treatments (i.e., phase locking; Fig. 1a), synchrony between
the populations (Fig. 1b), or seemingly chaotic dynamics (Fig. 1c; Table 2). To better understand this
complex behaviour, we considered a one-dimensional discrete-time return map describing the change in
u in between treatments of v.

3.2 Discrete-time treatment dynamics

For two populations that have identical growth rates but low connectivity, the return map had a stable
equilibrium in the open interval (Nmin, Nmax) (the exact value depended on the level of connectivity)
and unstable equilibria at Nmin and at Nmax. This dynamical behaviour is termed phase locking because
the two populations had the same period but their dynamics were shifted out of phase by a fixed amount
(Becks and Arndt 2013). The consequence was alternating treatments of u and v, with a stable equilibrium
for the population density u whenever v was treated (Fig.1a & 2a). If both populations were treated at
the same time, u was exactly at the unstable equilibrium. In this case, the two populations remained
synchronized because the period of their oscillations was identical.

If the stable equilibrium was at the treatment threshold Nmin or Nmax, then the dynamics of the two
populations tended towards synchrony. From our limited investigation of parameter space, this was ob-
served when connectivity between the populations was equal and greater than the internal growth rates of
the populations (i.e., rij = rji > rii = rjj ; Table 2). Synchrony also occurred if the internal growth rates
were unequal, but the total growth rates of the two populations were equal (i.e., ruu + ruv = rvv + rvu)
and one population had a lower growth rate and higher connectivity to the other population. In this case,
the population with higher connectivity became entrained by the dynamics of the “source” population.

A third type of behaviour occurred when the total growth rates of the populations were not equal. In
this case, the two populations oscillated with different periods. There was a discontinuity in the return
map where u went from being treated once to twice (or two to three times, depending on the relative
growth rates) before v was treated (Fig. 2c). This discontinuity resulted in periodic or seemingly chaotic
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behaviour. Unlike in phase locking or synchrony, the population density u was not the same each time v
was treated (Fig. 1c).

Table 2 Summary of parameter values under which different dynamics were observed.

Internal growth rate Connectivity Behaviour Figure

ruu = rvv

(ruv = rvu) ≤ (ruu = rvv) Phase locking Fig. 2a
(ruv = rvu) > (ruu = rvv) Synchrony Fig. 2b & 4a
ruv 6= rvu Cycles

ruu 6= rvv

ruv = rvu; incl. ruv = rvu = 0 Cycles Fig. 2c
(ruu + ruv) = (rvu + rvv) Synchrony or phase locking Fig. 4b & S8
Else Phase locking or cycles Fig. 2c

3.3 Parameter sensitivity

Increasing the connectivity between two patches resulted in changes to the long-term values of φ(u∗),
the population density at re-treatment (Fig. 3 and Fig. S1). Some of these changes happened abruptly
when the connectivity crossed a threshold (Fig. 3c,d) while others happened gradually (Fig. 3a). When
the two populations had equal internal growth rates and equal connectivity, increasing the connectivity
lead to increasing population density at re-treatment, until connectivity equalled the internal growth rates
(scenario A in Table 1; Fig. 3a). At that point, the dynamics were phase-locked such that the population
density at re-treatment was always the initial population density (i.e., (φ(u∗) = u∗) ∀ u∗; see Online
Resource Figs S2-S5 for illustrative animations).

When connectivity was increased from u to v only (e.g., scenario B in Table 1), the return map had
a discontinuity because the total growth rate of v was higher than that of u. In that case, we observed
periodic dynamics, the simplest being a two-point cycle that occurred near rvu = 0.8 (Fig. 3b). In these
two point cycles, after the initial treatment of v, u will be treated once, then after the next treatment of v,
u will be treated twice. This cycle repeats itself resulting in a pattern of treatments v, u, v, u, u, v, u, v,
u, u, etc., with u having a lower population density at the treatment of v if u has been treated twice since
the previous treatment of v.

When the internal growth rates of the populations were not equal (i.e., scenarios C and D in Table
1), the dynamics tended to be cyclic (Fig. 3c,d). However, abrupt changes from cyclic dynamics to stable
points occurred as connectivity was increased to the point where the return map touched or crossed the
1:1 line. For example, in scenario D, when rvu neared 0.51, the dynamics tended towards phase locking
(Fig. S5). As connectivity increased from rvu = 0.35 to rvu = 0.51, the stable point approachedNmin and
the magnitude of the rescue effect decreased because u had a lower population density on treatment of v.
When the total growth rates were exactly equal (i.e., rvu = 0.51 such that (ruu + ruv) = (rvu + rvv)),
the two populations became synchronized (Fig. 3d; Table 2).

Increasing the connectivity between the patches did not necessarily result in a monotonic increase
in the frequency of treatments (Fig. S6). For illustration, we focus on the frequency of treatments under
scenario A, but with connectivity increasing to ruv = rvu = 2.00, and on scenario D with connectivity
between rvu = 0.35 and 0.52. In these scenarios, the internal growth rates were held constant (Table 1).
Thus, we expected that the frequency of treatments would increase with increasing connectivity because
the the total growth rate to the populations was increasing. However, we observed a sharp decline in
the frequency of treatments in scenario A when connectivity exceeded the internal growth rate (Fig. 4a).
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In scenario D, the frequency of treatments declined over the region of phase locking (see Fig. 3d) as
the stable point appraoched Nmin, reducing the impact of the rescue-effect. The minimum frequency of
treatments occurred where populations became synchronized at rvu + rvv = ruv + ruu (i.e, rvu = 0.51,
Fig. 4b). In the Online Resrouce, we also considered a decline in the internal growth rate as connectivity
increased such that rii = 1 − rij and the total growth rates to populations remained constant in order
to examine how connectivity affects the frequency of treatments independent of overall increases in the
growth rates. These simulations also showed a decrease in the frequency of treatments when populations
became synchronized, and frequency of treatments remained low as connectivity increased further (Fig.
S7).

3.4 Testing for chaos

The time series of population density appeared chaotic when the period of the population cycles in the
two patches was different (Fig. 1c). The bifurcation diagrams showed large regions of parameter space
that had potentially chaotic dynamics (Fig. 1c and Fig. 3c-d). However, the Lyapunov exponent was not
greater than zero in any of the scenarios (Fig. 3c-d), indicating the dynamics were not chaotic. Instead,
the dynamics of two populations with different internal periods of oscillations appeared quasiperiodic.
For periodic cycles, after iterating the return map a finite number of times, we returned to the exact
value at which we started (e.g., Fig. 5b). Quasiperiodic cycles are differentiated from periodic cycles by
cobwebbing the return map; over several treatments of v, φ(u∗) returned to the original branch of the
return map very near to the starting point but not exactly at the starting point, such that the dynamics
were shifted slightly (e.g., Fig. 5d). We note that a precise distinction between quasiperiodic and periodic
dynamics is limited by the the number of times we could numerically iterate the return map.

3.5 Stochasticity

Small amounts of stochasticity added to the return map tended to shift quasiperiodic dynamics towards
chaos such that two population initially close had very different population densities after 200 iterations.
However, when the dynamics were periodic, the stochasticity was damped such that the fiducial trajectory
and the perturbed trajectory remained relatively close over 200 iterations of the return map (Fig. 5a). A
small change in rvu from 0.72 to 0.71 in scenario C caused a transition from periodic to quasiperiodic
dynamics (Fig. 5b,d). In the quasiperiodic case, the two trajectories drifted apart as the stochasticity accu-
mulated (Fig. 5c). For scenario D, when rvu was increased from 0.31 to 0.32, the deterministic dynamics
went from quasiperiodic to phase locking (Fig. 3d). In this case, as in scenario C, stochasticity caused
the trajectories to diverge for rvu = 0.31 corresponding to the quasiperiodic dynamics, but stochasticity
was damped when the deterministic dynamics exhibited phase locking (Fig. S9). This shows that small
amounts of stochasticity can accumulate, when dynamics are not stable or periodic, and result in sensitiv-
ity to initial conditions that is characteristic of chaotic dynamics. Indeed, the Lyapunov exponents for the
stochastic version of the model shown in Fig. 5 were λ = 14.19 (range 14.16 to 14.21) for rvu = 0.71,
compared to λ = −0.001 for the deterministic model. The Lyapunov exponent was also positive but
smaller for the periodic dynamics corresponding to rvu = 0.72, which showed damped oscillations (Fig.
5a).

4 Discussion

The current magnitude and extent of coupled human and natural systems is unprecedented and there is an
urgent need to better understand the consequences of accelerating human impacts on natural ecosystems
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and the services that they provide (Millennium Ecosystem Assessment 2005). In this study, we considered
the reciprocal interactions between the natural dynamics of parasite populations and human intervention
in the form of parasite control. The resulting dynamics were surprisingly complex, and demonstrate the
potential for unexpected behaviour to result in policies that are well-meaning but have unintended and
potentially perverse consequences for the health of ecosystems.

4.1 Implications for sea louse management

In Pacific Canada, salmon farms must treat with chemotherapeutants when sea louse populations exceed
three motile sea lice per fish, a guideline that is meant to protect juvenile wild salmon from sea louse
infestations during a vulnerable period of their migration (British Columbia Ministry of Agriculture and
Lands 2005; Brooks 2009). However, our model showed that strict threshold control of parasites accord-
ing to this policy may lead to asynchronous or even chaotic dynamics on adjacent farms connected by
dispersal. In practice, whether dynamics are truly chaotic may not matter; given the timeframe of obser-
vations and management decisions, periodic dynamics may be just as challenging to predict and control.
Increasing connectivity between populations tended to increase the frequency of treatments, unless popu-
lations were synchronized. Frequent, uncoordinated treatments are a problem because they may hasten the
evolution of sea louse resistance to current chemotherapeutants by allowing sea lice that are resistant to
treatment to disperse and find mates on nearby, untreated farms (Aaen et al 2015). Further, asynchronous
parasite dynamics among farms make it difficult to ensure low parasite abundance during the wild juve-
nile salmon migration. Paradoxically, because threshold treatments tend to decouple parasite populations
when not coordinated, this well-intended policy could mean high sea louse abundances on salmon farms
along the migration route, transmission to juvenile salmon (Krkošek et al 2006; Marty et al 2010) and
adverse impacts on wild salmon populations (Krkošek et al 2011; Peacock et al 2013).

The current treatment threshold policy does reduce louse abundance on farms, but more coordinated
efforts to synchronize the parasite dynamics among farms may reduce reliance on chemotherapeutants.
We found that at low levels of dispersal, the frequency of treatments increased with increasing connectiv-
ity, suggesting that dispersal among farms hinders control efforts. However, the frequency of treatments
declined substantially when connectivity was high enough that parasite dynamics were synchronized
between farms (Fig. 4a). In reality, dispersal of sea lice among farms is likely too low to synchronize
parasite dynamics on adjacent farms by itself (Adams et al 2012; Foreman et al 2015, although shared
environmental effects may help, see below). But for populations that were weakly coupled but had similar
internal growth rates (e.g., have a similar number/age of hosts and are exposed to similar environmen-
tal conditions), synchrony could be induced by either treating populations at the same time (even if one
population had not reached the threshold) or coordinating stocking and harvest among adjacent farms so
that they start with the same initial conditions. Such strategies may reduce the potential for the rescue
effect in louse populations on adjacent farms and therefore lower the frequency of treatments, but re-
quire coordinated effort among multiple stakeholders (e.g., different levels of government and industry).
Pest management plans that require this kind of cooperation have been recommended (e.g., Brooks 2009;
Peacock et al 2013), but are still not implemented in many areas, including Pacific Canada.

4.2 Model limitations

Our simple model did not consider exogenous forces on the population dynamics such as variability in
growth rates due to shared environmental conditions. Such forces are likely, due to the effect of temper-
ature and salinity on settlement success (Bricknell et al 2006), developmental rates (Groner et al 2014;
Stien et al 2005) and survival (Johnson and Albright 1991a) of sea lice. Environmental conditions have
been proposed to result in synchrony of local population dynamics over wide geographic scales (i.e.,
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Moran effects; Moran 1953). Indeed, such an effect has been shown in a variety of systems (e.g., Cheal
et al 2007; Grenfell et al 1998). Sea louse populations on farmed salmon show annual cycles (Marty et al
2010) that may be driven, in part, by changes in salinity and/or temperature (Johnson and Albright 1991b).
The relative contributions of dispersal versus environment in driving synchrony of local populations is an
ongoing question in ecology (Lande et al 1999), and sea lice in networks of salmon farms may provide an
ideal model system due to the extensive monitoring of louse populations and environmental conditions on
salmon farms. These data have been used in statistical analyses aimed at management applications (e.g.,
Rogers et al 2013; Revie et al 2003), but could also be useful in answering questions of general interest
in ecology.

4.3 Dynamics of coupled populations

There has been considerable theoretical interest in how dispersal affects the dynamics of coupled popula-
tions (e.g., Dey et al 2014, 2015; Hastings et al 1993; Kendall and Fox 1998; Goldwyn and Hastings 2011;
Franco and Ruis-Herrera 2015). Our analysis expands on previous theoretical work in several ways. First,
we considered control of populations when a threshold abundance was reached. Previous work has con-
sidered density dependence as part of the intrinsic dynamics of local populations (e.g., the Ricker model,
Dey et al 2015; Hastings et al 1993) or periodic interventions such as feeding and harvest (e.g., Chau
2000). We consider a nonlinear reciprocal interaction between parasite populations and control interven-
tion that had not yet been explored, although our approach shares similarities with work on Adaptive
Limiter Control, discussed below (e.g., Sah et al 2013). Second, we analyzed a continuous-time popula-
tion model that may be more representative for some species, but were able to simplify our analysis by
considering a discrete time return map for the population density in one patch at the time of treatment
in the other. This dynamical-systems approach has gained attention recently in the context of peak to
peak dynamics (Rinaldi et al 2001) and statistical methods for analyzing time series data (Sugihara et al
2012), but also has broader applications for simplifying analyses of continuous-time models for interact-
ing populations (Schaffer 1985). Finally, we varied both the internal growth rates and connectivities in
our populations to explore scenarios where growth rates of the two populations differed and connectivity
was not necessarily reciprocal. Many studies of coupled populations only consider equal connectivity
(although see Dey et al 2014; Franco and Ruis-Herrera 2015).

Increasing connectivity between two populations subject to control was expected to increase the fre-
quency of treatments, but the simple model we developed displayed much more complex dynamics. Our
results were consistent with other population models that show high connectivity leads to synchrony of
populations while lower levels of connectivity lead to out-of-phase dynamics (Dey et al 2015, 2014).
If the two populations had different periods due to unequal growth rates, the dynamics underwent peri-
odic or quasiperiodic cycles. When dynamics were periodic, added stochasticity was damped such that
the difference between nearby trajectories remained small. Hastings (Hastings 1993) analyzed a coupled
discrete logistic model and also found that the addition of stochasticity resulted in chaos for parameter
values corresponding to a four-point cycle in the deterministic model, but stable population densities for
parameter values corresponding to a two-point cycle in the deterministic model. This result highlights the
fine line between predictable deterministic dynamics and chaos (Hastings 1993).

Previous work on threshold interventions in population dynamics have incorporated Adaptive Limiter
Control (ALC; e.g., Sah et al 2013). ALC involves a threshold intervention as in our model, but works
to the opposite effect: where we consider control of a population when it goes above a threshold, ALC
avoids population crashes by forcing immigration when the population drops below a threshold. Despite
this difference, high thresholds for ALC tend to decouple subpopulations in a similar manner to our strict
treatment threshold (Sah et al 2013). This decoupling has opposite effects on fluctuations of the metapop-
ulation depending on the migration rate between subpopulations. At high migration rates, subpopulations
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tend to be positively correlated, such that decoupling due to ALC is effective at increasing stability of the
overall metapopulation. However, at low migration rates, subpopulations are more likely to be fluctuat-
ing out of phase and therefore ALC exacerbates this negative synchrony and decreases metapopulation
stability. Sah et al (2013) found both theoretical and empirical evidence that these effects of ALC gener-
ally act to increase persistence of populations and metapopulations. Considering populations of pests and
pathogens, persistence is not the desired outcome, providing an intriguing possibility that by decoupling
populations, threshold effects may actually hinder eradication unless coordinated.

4.4 Conclusion

The complexity of coupled human and natural systems has gained attention as we recognize and attempt
to understand our impact on natural ecosystems. For aquaculture, the interaction between farm man-
agement and natural pathogen dynamics, including dispersal among farms, may lead to unpredictable
dynamics that undermine our ability to maintain a healthy environment for both farmed and wild salmon.
The successful management of disease in coastal ecosystems likely requires cooperation among different
companies to synchronize and stabilize pathogen dynamics. This example emphasizes that human-natural
couplings cross the boundaries of policy and governance, and cooperation among stakeholders at differ-
ent levels is required to achieve the common goal of healthy and sustainable ecosystems that can support
adaptive human populations.
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CW, Krkošek M (2013) Modeling parasite dynamics on farmed salmon for precautionary conserva-
tion management of wild salmon. PLoS ONE 8(4):e60,096, doi: 10.1371/journal.pone.0060096, URL
http://dx.doi.org/10.1371/journal.pone.0060096

Sah P, Paul Salve J, Dey S (2013) Stabilizing biological populations and metapopulations through Adap-
tive Limiter Control. Journal of theoretical biology 320:113–23, doi: 10.1016/j.jtbi.2012.12.014, URL
http://www.sciencedirect.com/science/article/pii/S002251931200642X

Samways MJ (1979) Immigration, population growth and mortality of insects and mites on cassava
in Brazil. Bulletin of Entomological Research 69(03):491–505, URL http://dx.doi.org/10.
1017/S000748530001899X

Schaffer WM (1985) Order and chaos in ecological systems. Ecology 66(1):93–106, URL http://
www.esajournals.org/doi/abs/10.2307/1941309

Silva A (2003) Morphometric variation among sardine (Sardina pilchardus) populations from the north-
eastern Atlantic and the western Mediterranean. ICES Journal of Marine Science 3139(03):1352–
1360, doi: 10.1016/S1054, URL http://icesjms.oxfordjournals.org/content/60/
6/1352.short

Sprott J (2003) Chaos and time-series analysis. Oxford University Press, URL http://sprott.
physics.wisc.edu/chaostsa/

http://www.who.int/entity/globalchange/ecosystems/ecosys.pdf$\delimiter "026E30F $nhttp://www.loc.gov/catdir/toc/ecip0512/2005013229.html
http://www.who.int/entity/globalchange/ecosystems/ecosys.pdf$\delimiter "026E30F $nhttp://www.loc.gov/catdir/toc/ecip0512/2005013229.html
http://www.who.int/entity/globalchange/ecosystems/ecosys.pdf$\delimiter "026E30F $nhttp://www.loc.gov/catdir/toc/ecip0512/2005013229.html
http://www.publish.csiro.au/?paper=ZO9530291
http://www.publish.csiro.au/?paper=ZO9530291
http://www.esajournals.org/doi/abs/10.1890/12-0519.1
http://www.esajournals.org/doi/abs/10.1890/12-0519.1
http://onlinelibrary.wiley.com/doi/10.1002/ps.491/abstract
http://onlinelibrary.wiley.com/doi/10.1002/ps.491/abstract
http://rspb.royalsocietypublishing.org/content/262/1364/113.abstract
http://rspb.royalsocietypublishing.org/content/262/1364/113.abstract
http://onlinelibrary.wiley.com/doi/10.1002/ps.476/abstract
http://www.int-res.com/abstracts/dao/v57/n1-2/p85-95/
http://www.int-res.com/abstracts/dao/v57/n1-2/p85-95/
http://onlinelibrary.wiley.com/doi/10.1046/j.1461-0248.2001.00273.x/full
http://onlinelibrary.wiley.com/doi/10.1046/j.1461-0248.2001.00273.x/full
http://dx.doi.org/10.1371/journal.pone.0060096
http://www.sciencedirect.com/science/article/pii/S002251931200642X
http://dx.doi.org/10.1017/S000748530001899X
http://dx.doi.org/10.1017/S000748530001899X
http://www.esajournals.org/doi/abs/10.2307/1941309
http://www.esajournals.org/doi/abs/10.2307/1941309
http://icesjms.oxfordjournals.org/content/60/6/1352.short
http://icesjms.oxfordjournals.org/content/60/6/1352.short
http://sprott.physics.wisc.edu/chaostsa/
http://sprott.physics.wisc.edu/chaostsa/


Coupled populations subject to control 17

Steen H, Ims RA, Sonerud GA, Steen H (1996) Spatial and Temporal Patterns of Small-Rodent Population
Dynamics at a Regional Scale. Ecology 77(8):2365–2372, URL http://www.esajournals.
org/doi/abs/10.2307/2265738

Stien A, Bjørn PA, Heuch PA, Elston DA (2005) Population dynamics of salmon lice Lepeophtheirus
salmonis on Atlantic salmon and sea trout. Marine Ecology Progress Series 290(Kabata 1979):263–
275, doi: 10.3354/meps290263, URL http://dx.doi.org/10.3354/meps290263

Sugihara G, May R, Ye H, Hsieh Ch, Deyle E, Fogarty M, Munch S (2012) Detecting Causal-
ity in Complex Ecosystems. Science 338(6106):496–500, doi: 10.1126/science.1227079, URL
http://www.ncbi.nlm.nih.gov/pubmed/22997134http://www.sciencemag.
org/content/338/6106/496.abstract

Tompkins DM, Carver S, Jones ME, Krkošek M, Skerratt LF (2015) Emerging infectious diseases of
wildlife: a critical perspective. Trends in Parasitology 31(4):149–159, doi: 10.1016/j.pt.2015.01.007,
URL http://linkinghub.elsevier.com/retrieve/pii/S1471492215000197

Van Bael S, Pruett-Jones S (1996) Exponential Population Growth of Monk Parakeets in the United States.
The Wilson Bulletin 108(3):584–588, URL http://www.jstor.org/stable/4163726

Walker PJ, Winton JR (2010) Emerging viral diseases of fish and shrimp. Veterinary Research 41(6),
doi: 10.1051/vetres/2010022

http://www.esajournals.org/doi/abs/10.2307/2265738
http://www.esajournals.org/doi/abs/10.2307/2265738
http://dx.doi.org/10.3354/meps290263
http://www.ncbi.nlm.nih.gov/pubmed/22997134 http://www.sciencemag.org/content/338/6106/496.abstract
http://www.ncbi.nlm.nih.gov/pubmed/22997134 http://www.sciencemag.org/content/338/6106/496.abstract
http://linkinghub.elsevier.com/retrieve/pii/S1471492215000197
http://www.jstor.org/stable/4163726


18 Stephanie J. Peacock et al.

A Solution to ODE

The solutions to Eq. (1) are:

u(t) = fu(t, u0, v0)

= c1 exp
[
ruu + rvv + α

2
t

]
+ c2 exp

[
ruu + rvv − α

2
t

]
(A.1)

v(t) = fv(t, u0, v0)

= c1

(
rvv − ruu + α

2ruv

)
exp
[
ruu + rvv + α

2
t

]
+ c2

(
rvv − ruu − α

2ruv

)
exp
[
ruu + rvv − α

2
t

]
, (A.2)

where

c1 =
2ruvv0 − u0(rvv − ruu − α)

2α
(A.3)

c2 =
u0(α+ rvv − ruu)− 2ruvv0

2α
(A.4)

α =
√

(ruu − rvv)2 + 4ruvrvu. (A.5)

To get the time of the next treatment given the growth rates and initial conditions, we first rearrange Eqs (A.1-A.2). We denote
the time of the next treatment of u and v as Tu and Tv , respectively. The equations for Tu and Tv are:

2αNmax = exp

(
ruu + rvv

2
Tu

)[(
exp

(α
2
Tu
)
− exp

(
−α
2
Tu

))
(2ruvv0 + u0(ruu − rvv))

+u0 α

(
exp

(α
2
Tu
)
+ exp

(
−α
2
Tu

))]
(A.6)

4αruvNmax = exp

(
ruu + rvv

2
Tv

)
[(2ruvv0 (rvv − ruu) + 4u0 rvuruv)(

exp
(α
2
Tv
)
− exp

(
−α
2
Tv

))
+ 2ruvv0α

(
exp

(α
2
Tv
)
+ exp

(
−α
2
Tv

))]
. (A.7)

In Eqs (A.6-A.7), Tu and Tv cannot be solved for explicitly, so we used a numerical root finding algorithm to determine Tu and
Tv .

B Development of return map

We used the dynamical system described in Eq. (2) to construct a return map that takes the population density u when v is treated
and returns u the next time v is treated. We first consider the scenario where u is not treated in between consecutive treatments of
v. We denote the time to the next treatment of v as Tv0. In this case, the resulting population density u at the next treatment of v is

φ(u∗) = fu
(
Tv0, u

∗, Nmin
)
, (B.1)

where fu is the solutions to Eq. (1), given in Appendix A. Next, we consider the case where u is treated once in between treatments
of v. This leads to a return map of the form,

φ(u∗) = fu
(
Tv1, Nmin, fv(Tu0, u

∗, Nmin)
)
, (B.2)

where Tu0 is the time from the initial treatment of v to the treatment of u and Tv1 is the subsequent time from the treatment of u
to the next treatment of v. These two cases can be combined into a single equation as,
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φ(u∗) = H(T̃0) fu
(
Tv0, u

∗, Nmin
)︸ ︷︷ ︸

u not treated

+H(T̃1)
[
1−H(T̃0)

]
fu
(
Tv1, Nmin, fv(Tu0, u

∗, Nmin)
)

︸ ︷︷ ︸
u treated once

. (B.3)

We can continue in this way to get the equation that includes the possibility for u being treated twice in between treatments of
v,

φ(u∗) = H(T̃0) fu
(
Tv0, u

∗, Nmin
)︸ ︷︷ ︸

u not treated

+H(T̃1)
[
1−H(T̃0)

]
fu
(
Tv1, Nmin, fv(Tu0, u

∗, Nmin)
)

︸ ︷︷ ︸
u treated once

(B.4)

+H(T̃2) [1−H(T̃1)] fu
(
Tv2, Nmin, fv(Tu1, Nmin, fv(Tu0, u

∗, Nmin))
)︸ ︷︷ ︸

u treated twice

.

By induction, we arrive at the general equation for the return map, given in (3):

φ(u∗) =
[
H(T̃0)

]
fu
(
Tv0, u

∗, Nmin

)
︸ ︷︷ ︸

m=0

+

[ ∞∑
m=1

H(T̃m)

m−1∏
n=0

[1−H(T̃n)]

]
fu
(
Tvm, Nmin, vm−1

)
︸ ︷︷ ︸

m≥1

. (B.5)

C Algorithm describing return map

Because Eqs (A.6-A.7) can not be solved for Tu and Tv , model analysis by the return map involved simulating successive treatments
until v was treated next. The recursive algorithm we applied to calculate the population density u when v was treated next is:

function u_next(u, v, R)
evaluate T_u(u, v, R) = Tu Calculate the time to the next treatment of u
evaluate T_v(u, v, R) = Tv and the time to the next treatment of v
if (T_u>T_v) then If the time to treatment of v is less,

return f_u(T_v, u, v) return u when v is treated.
else Otherwise, u is treated.

v_new = f_v(T_u, u v) Calculate v when u is treated and
return u_next(Nmin, v_new, R) repeat function with new initial values.

end if
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Fig. 1 Three types of behaviour observed were observed for connected populations subject to control: (a) alternating treatments
of populations for equal growth rates of the two populations and connectivity less than the internal growth rates (rij/rii = 0.1),
(b) synchrony in the population dynamics between patches for equal growth rates of the two populations and connectivity greater
than the internal growth rates (rij/rii = 10) and (c) apparently chaotic dynamics where the treatment timing was unpredictable
for unequal growth rates of the two populations. Initial conditions were u0 = 2.7 (black line) and v0 = Nmin (grey line). The
upper and lower horizontal dashed lines indicate the treatment threshold and abundance of parasite immediately after treatment,
respectively.
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Fig. 2 Return maps for the population density u at re-treatment of v (φ(u∗)) over increasing initial population density, u∗. (a)
For low connectivity, there was a stable equilibrium in (Nmin, Nmax) (black point) and unstable equilibria at Nmin and Nmax (white
points). (b) When connectivity was higher than internal growth, there was an unstable equilibrium in (Nmin, Nmax) and stable
equilibria at Nmin and Nmax, and the two populations synchronized. (c) For unequal connectivity, u was treated m or m+ 1 times
before v was treated, yielding a discontinuity in the return map that resulted in cycles. The relative growth rates in each panel
correspond to those in Fig. 1. The grey lines show 30 iterations of the return map (i.e., cobwebbing) from u∗ = 2.7, ending at the
grey point.
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Fig. 3 Long-term values of φ(u∗) and the Lyapunov exponents λ under four different scenarios for changing connectivity (a-d;
scenarios A-D in Table 1). In calculating long-term values, for each value of connectivity we plotted the last 500 of 2000 iterations
starting at u∗0 = 2.7 (see Fig. S1 for results with other starting values). Red and blue points in (c) indicate the parameter values for
stochastic simulations in Fig. 5. Online version in colour.
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Fig. 4 The frequency of treatments over increasing connectivity. (a) In scenario A, the frequency of treatments drops when the
connectivity exceeds internal growth rates (dotted line) and populations become synchronized (Table 2), but rises again as connec-
tivity increases further due to increasing total growth rate. (b) In scenario D, the frequency of treatments declines over the region of
phase locking (see Fig. 3d) as the stable point approaches Nmin, reducing the impact of the rescue-effect. The minimum frequency
of treatments occurs where populations are synchronized at rvu + rvv = ruv + ruu (i.e, rvu = 0.51, dotted line; Table 2).
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Fig. 5 The effect of stochasticity differed with small changes in parameters. The difference between two trajectories initially
separated by ε0 remained small for parameters under which the deterministic model showed periodic dynamics (a), but increased
for parameters under which the deterministic model showed quasiperiodic dynamics (c). The corresponding deterministic return
maps of the fiducial trajectory for scenario B with rvu = 0.72 (b) and rvu = 0.71 (d) (see Fig. 3b). Online version in colour.
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