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We conducted a manipulative field experiment to determine whether the leaping behaviour of 

wild juvenile sockeye salmon Oncorhynchus nerka dislodges ectoparasitic sea lice Caligus 

clemensi and Lepeophtheirus salmonis by comparing sea-lice abundances between O. nerka 

juveniles prevented from leaping and juveniles allowed to leap at a natural frequency. Juvenile 

O. nerka allowed to leap had consistently fewer sea lice after the experiment than fish that were 

prevented from leaping. Combined with past research, these results imply potential costs due to 

parasitism and indicate that the leaping behaviour of juvenile O. nerka does, in fact, dislodge sea 

lice.  
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Understanding drivers of the potentially energetically expensive leaping behaviour of juvenile 

Pacific salmon Oncorhynchus spp. is important because it remains unexplained and occurs 

during their outmigration, marked by high rates of mortality. Our study demonstrates that leaping 

juvenile sockeye salmon (O. nerka) have fewer sea lice than non-leaping juveniles, supporting 

the hypothesis that leaping dislodges parasites and underlining potential energetic costs and 

benefits. 

 

 

 

 

1 | INTRODUCTION 

 

Why do fish leap? This question has captivated biologists and fishers alike for decades, giving 

rise to a multitude of hypotheses. Gudger (1944) wrote that “fishes are given to leaping for many 

reasons: in fear or panic, to escape their enemies, to ascend waterfalls, to capture food and 

sometimes in sheer exuberance – in plain English, in fun or play.” He was preceded (and 

followed) by anglers noting the remarkable leaping powers of fish and bringing hypotheses of 

their own, for example that the leaping of whiprays (family Dasyatidae ) is intended to remove 

remoras (family Echeneidae) attached to their bodies (Anon., 1912). While the question is an old 

one and speculation is abundant, there remain relatively few studies testing hypotheses 

associated with the leaping behaviour of fish.   

Adult Pacific salmon Oncorhynchus spp. (Suckley 1861) leap over obstacles during 

upstream migration to their spawning grounds (Lauritzen et al., 2010; Bronmark et al., 2014), 

but no one knows why they frequently leap as juveniles in the coastal marine environment. In 
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contrast to the hydrodynamically efficient leaping that improves swimming performance in many 

marine mammals (Fish et al., 2008), the leaping behaviour of juvenile Oncorhynchus spp. does 

not appear to serve this role and often results in slapping contact with the water upon entry 

(Supporting Information Video S1). Although some fish leap to catch airborne prey (Day et al., 

2016) or avoid predators (Eklöv and Persson, 1996), the diet of sockeye salmon Oncorhynchus 

nerka (Walbaum 1792) is composed almost exclusively of zooplankton in the water column 

(Price et al., 2013) and in experimental settings juvenile Oncorhynchus spp. typically scatter 

rather than leap in response to predation threats (Krkošek et al., 2011). Parasite dislodgement, on 

the other hand, is a plausible reason for juvenile Oncorhynchus spp. to leap, as higher rates of 

leaping have been observed to occur in association with sea louse infestation in both aquaculture 

(Wootten & Smith, 1982; Furevik et al., 1993, Stone et al., 2002) and experimental settings 

(Grimnes & Jakobsen, 1996; Webster et al. 2007). Leaping is probably an energetically 

expensive behaviour (Krohn & Boisclair, 1994), so the fish presumably derive some benefit from 

the six- (Grimnes & Jakobsen, 1996) to fourteen-fold (Webster et al., 2007) increase in leaping 

rate associated with sea louse infestation. 

Sea lice have been the subject of extensive research due to their adverse effects on both 

farmed and wild salmonids (reviewed in Costello 2006, 2009). These effects include direct 

mortality Wooten & Smith, 1982; Krkošek et al., 2006), but mounting evidence suggests that 

sub-lethal effects, such as effects on host susceptibility (Peacock et al., 2015), competitive ability 

(Godwin et al., 2015) and growth (Godwin et al., 2017), may play an important role in 

determining survival of wild juvenile Oncorhynchus spp. infected with sea lice. Two primary 

species of sea lice Lepeophtheirus salmonis and Caligus clemensi parasitize Oncorhynchus spp. 

in the marine waters of coastal British Columbia (BC; Johnson & Albright, 1991a; Beamish et 
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al., 2005). Lepeophtheirus salmonis has high host specificity for salmonids whereas C. clemensi 

has a broader host range that includes other nearshore marine fishes such as three-spine 

stickleback Gasterosteus aculeatus l. 1758, Pacific herring Clupea pallasii Valenciennes 1847 

and greenling (Hexagrammos spp. Tilesius 1810) (Parker & Margolis, 1964; Jones et al., 2006a; 

Morton et al., 2008). The life cycle of both lice species begins with two free-living nauplius 

stages, followed by initial host attachment at the copepodid stage and development through 

several chalimus stages (two for L. salmonis and four for C. clemensi) attached by a frontal 

filament to their host (Kabata, 1972; Hamre et al., 2013). Lepeophtheirus salmonis chalimi moult 

into pre-adults then adults, both of which are characterized by their ability to move on and 

among hosts except for a brief period of attachment during moulting (Pike & Wadsworth, 1999). 

Adult C. clemensi are also mobile, but there is some uncertainty as to whether they have a pre-

adult stage and associated attachment during moulting (Kabata, 1972; Ho & Lin, 2004). 

Hereafter, we collectively refer to pre-adult and adult L. salmonis and adult C. clemensi as 

motiles. For further life cycle details of L. salmonis and C. clemensi, see Johnson & Albright 

(1991b) and Kabata (1972) respectively.  

It has long been hypothesized that fish may leap to remove ectoparasites (Gudger, 1944), 

but this has never been tested experimentally. We used a manipulative field experiment to test 

the hypothesis that sea lice are dislodged by the leaping behaviour of wild juvenile O. nerka. Our 

study used juvenile O. nerka (post-smolts) migrating from the Fraser River through Johnstone 

Strait, BC, where C. clemensi are more prevalent than L. salmonis (Price et al., 2011; Godwin et 

al. 2015). We focused on pre-adult and adult stages of sea lice, that are not attached by a frontal 

filament, for three reasons: they can be identified in the field quickly with minimal stress to the 

fish; they impose the greatest cost on their host (Wootten & Smith, 1982; Jakob et al., 2013); 
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they seem more likely than the attached stages to become dislodged when their host leaps, 

especially in the case of Caligus spp. which are attached during the copepod and chalimus stages 

(Kabata, 1972) and transfer frequently between hosts as adults (Hogans & Trudeau, 1989; Øines 

et al., 2006; Saksida, 2015). To test whether leaping behaviour dislodges motile sea lice on 

juvenile O. nerka, we held wild-caught O. nerka in ocean enclosures where we allowed one 

group of fish to leap freely and prevented a second group from leaping. 

 

2 | MATERIALS AND METHODS 

 

2.1 | Fish collection and transport 

 

We conducted our field experiment in the Broughton Archipelago, BC, making six collections of 

O. nerka post-smolts made in Bauza Cove, Johnstone Strait, BC (50.5437
o 

N; 126.8171
o 
W) 

between 31 May and 23 June 2016 (Figure 1). Based on the timing of the collections and 

previous genetic analyses, it is very likely that most of the collected fish originated from the 

Fraser River (Price et al., 2011; B. Hunt, unpubl. data). 

We caught fish from a 6 m motorized vessel at distances of c. 5–60 m from shore, using a 

small purse seine designed for manual retrieval (bunt: 27 x 9 m with 13 mm mesh; tow: 46 x 9 m 

with 76 mm mesh). Temperature and salinity were measured at the collection site 1 m below the 

surface of the water for three of the six collections (equipment was unavailable for the other 

three; Table 1), although measurements taken at the collection site for other ongoing research 

projects fluctuated little during the collection period (B. Hunt, unpubl. data). Captured fish were 

initially held alongside the vessel in a submerged portion of the seine bunt end, allowing fish to 
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swim without contacting the net and minimizing louse dislodgement. Individual fish were 

transferred from the net as in Godwin et al. (2015) by capturing them using a seawater-filled 

3.79 l plastic milk jug with the base removed and allowing them to swim out of the re-submerged 

milk jug after transfer. This method prevented direct contact with the fish to minimize sea louse 

dislodgement and the same technique was used for all subsequent transfers of individual fish. 

Fish were first transferred to 13.2 l transparent plastic aquaria [0.36 m length (L) x 0.21 m width 

(W) x 0.21 m height (H)] where they could be visually inspected to confirm species identification 

of the fish and to confirm the presence of at least one motile sea louse per fish. To expedite the 

fish handling procedure and minimize stress to the fish, at this point sea louse abundances on 

each fish were not assessed beyond confirming their presence. Fish confirmed to have at least 

one motile sea louse were transferred into an insulated 300 l fish tote (0.97 m L x 0.55 m W x 

0.58 m H) half-filled with seawater. To minimize pre-experiment holding time, collection was 

ceased after the first fish had been in the tote for approximately 1 h. For each collection, we 

retained between 64 and 95 juvenile O. nerka with motile lice (Table 1).  

We transported juvenile O. nerka by boat to Cramer Passage, BC (Figure 1; 50.74279
o  

N; 

126.52797
o
 W), using ice packs and battery-powered aquarium bubblers in the insulated tote to 

maintain appropriate temperature and oxygenation during the 1 h journey. During transport, fish 

were monitored for behaviours indicating stress, including gasps at the surface, fins clamped 

against their bodies and unusual movement (Martins et al., 2012). All fish from the six 

collections survived transport and no characteristic stress behaviours were observed. Detached 

lice were sought but not observed in the aquaria or in the insulated tote before or during 

transport.  
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For each of the six collections, we transferred fish to one of four flow-through net pen 

enclosures [4.4 m L x 3.2 m W x 2.3 m depth (D), with 8 mm knotless mesh] at a research 

facility composed of multiple floating wooden docks in a location sheltered from wave action. 

Individual fish were collected haphazardly from the transport tote (capturing the first fish that 

swam into the milk jug) and transferred sequentially to one of the four enclosures (i.e. first fish 

to enclosure 1, second to enclosure 2, etc. and then starting again with the fifth fish in enclosure 

1), thus avoiding one enclosure receiving all of the first or last fish. The four enclosures housed 

two treatments (leaping prevented) and two control (leaping allowed) trials that we describe 

below (Figure 2). We used a random number generator to select which two enclosures would 

house the covered treatments and repeated this randomisation for each collection to prevent any 

bias in pre-trial louse abundance that might have resulted from covering the same enclosures for 

each collection. In total, we had six collections, each of which consisted of two treatment and 

two control trials, resulting in 24 trials overall (Supporting Information Table S1). 

 

2.2 | Leaping experiment 

 

For each of the six collections, we covered the two treatment enclosures to prevent leaping while 

leaving the two control enclosures uncovered, allowing the fish to leap freely. The covering 

consisted of pieces of netting (4.4 m L x 3.2 m W, with 3 mm knotless mesh) that were carefully 

secured across the top of the enclosures, approximately 10 cm below the surface of the water 

(Figure 2). The surface netting was raised on two sides of the enclosure, creating an area 

(approximately 30 cm wide) for the fish to surface for air to fill their swim bladder, while still 
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not being able to leap (Figure 2). We began each trial once the surface netting was secured over 

the covered enclosure and the four concurrent trials for each collection lasted for c. 3 days.  

At the end of each trial, after retracting any coverings, each net-pen enclosure was pulled 

up to form a shallow pool and fish were carefully captured using the aforementioned milk jug 

method. For each set of trials, we used a random number generator to determine the order in 

which we pulled enclosures. Fish were transferred to individual 532 ml sterile sample bags 

(Whirl-Pak Write-On Bags; Nasco; www.enasco.com) and euthanized with 240 mg l
–1 

MS-222. 

Experienced individuals assessed the post-trial louse abundance of each fish using x16 hand 

lenses to identify louse life stage and sex (for pre-adult and adult L. salmonis but not C. 

clemensi) as in Krkošek et al. (2005). We also measured the fork length (LF) and body maximum 

dorso-ventral depth (DDV)of each fish. 

 

2.3 | Behavioural observations 

 

Throughout the 3 day trials, we conducted three 40 min observations each day to address two 

potential concerns: first, that the fish in the covered enclosures might be brushing against the 

surface covering, which could dislodge lice; second, that the fish in the uncovered enclosures 

might not leap at a sufficient rate to test for an effect of leaping on louse abundance. Observation 

periods occurred in the morning (c. 1 h after sunrise), midday (c. halfway between dawn and 

dusk) and evening (c. 2 h before sunset), during which an observer monitored one covered 

enclosure and one adjacent uncovered enclosure from a position with a clear view of each 

enclosure. Observers recorded the number of leaps in the uncovered enclosure as well as the 

number of contacts of any part of a fish body with the surface netting of the covered enclosure. 
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We characterized leaps as surface behaviours in which most or all of the body left the water with 

distinct entry and exit points. 

Fish were fed micropellet salmon feed (micro #1; EWOS; www.ewos.com) twice each 

day. Feeding took place midway through the dawn and evening observation periods so that any 

changes in leaping frequency due to feeding could be observed and to ensure that feeding did not 

induce fish contact with the surface netting. The fish were fed to satiation with approximately 2.1 

g per fish day
–1

, depositing the food using the same method and in the same corner of each 

enclosure. Salinity and temperature measurements were recorded at 0 m and 1 m depths after 

most dawn observation periods, depending on equipment availability.  

 

2.4 | Statistical analysis 

As is often the case with count data (Manté et al., 2016; Sellers et al., 2017), the post-trial 

louse abundance data from the leaping experiment were over-dispersed (Figure 3), demonstrating 

greater than expected variation relative to a Poisson distribution (mean motile abundance = 1.87, 

variance = 2.46).  

 To describe the post-trial louse abundance on juvenile O. nerka from the experiment 

while accounting for the non-normal distribution of those data, we used hierarchical 

bootstrapping to estimate the 95% C.I. for the average abundances across the entire experiment of 

C. clemensi and L. salmonis motiles and chalimus-stage lice (DiCiccio & Efron, 1996). We used 

10 000 bootstrap samples, first resampling from the 24 actual trials and then resampling from 

individuals within each of those trials. We also estimated the 95% C.I. for per-trial average louse 

abundances via standard bootstrapping.  
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To determine whether juvenile O. nerka leaping behaviour was an important predictor of 

post-trial motile louse abundance, we used generalized linear mixed-effects models (GLMM) to 

accommodate the hierarchical structure of our experiment, with a negative binomial error 

structure allowing for over-dispersed counts. We built a set of five candidate models around our 

a priori hypothesis that fish allowed to leap (i.e. fish in uncovered enclosures) would have lower 

post-trial motile abundances due to louse dislodgement caused by leaping. Our models included 

combinations of two fixed effects and their interaction: treatment (covered or uncovered) and 

enclosure (Table 2). We included enclosure to test whether the position of the experimental 

enclosure (one of four in each collection) influenced post-trial motile abundance due to factors 

such as variation in water movement, differences in the movement of motile lice into or out of 

the enclosures, or disturbance by researchers during the trial. We did not include data from the 

behavioural observations as predictors in the models because only two of the four enclosures 

were observed for each collection. 

All our models included a random intercept term to account for repeated trials within 

each collection and models that included treatment as a fixed effect also included an associated 

random term (a random slope) that again varied by collection.  

During the chalimus life stages of both C. clemensi and L. salmonis, lice are attached by a 

frontal filament to their host and unable to detach and re-attach (Kabata, 1972; Johnson & 

Albright, 1991b;). Assuming that attached lice are unlikely to be dislodged by leaping, the post-

trial abundance of lice at this life stage can serve as a natural control for our experiment, with the 

expectation that their abundance would not differ between treatment groups after the experiment. 

To test whether the post-trial chalimus louse abundances differed between treatment groups, we 

fit the same set of five candidate models with chalimus abundance per fish as the response 
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variable (Supporting Information Tables S2, S3). To prevent the potential influence of 

differential attachment between covered and uncovered enclosures of copepod lice that might 

moult into the chalimus stage within the 3 day trial period, we restricted the analysis to the final 

two of four C. clemensi chalimus stages (Kabata, 1972) and final one of two L. salmonis 

chalimus stages (Hamre et al., 2013), collectively referred to as large chalimus. We included the 

same random effects and again used a negative-binomial error structure to allow for over-

dispersion (mean motile abundance = 2.48, variance = 5.94). 

For both of the analyses, to determine which of our five models best explained motile or 

chalimus abundance, we conducted model selection using Akaike’s information criterion (AIC; 

Akaike, 1998) as a measure of model parsimony. All the statistical analyses were performed in R 

3.2.3 (www.r-project.org) using the glmmADMB package (Fournier et al., 2012).  

 

3 | RESULTS 

 On average, 9.71 ± 7.45 (mean ± S.D.) leaps were observed in an uncovered enclosure 

40
–1

 min observation period. Only nine contacts with the surface netting were observed over the 

38 observation periods (approximately 25 h in total). There was a higher frequency of leaps after 

feeding than before (paired t-test, t = 2.2677, d.f. = 95, P < 0.05). Fish LF ranged from 8.3 to 14.1 

cm with a mean of 10.01 ± 0.66 cm (Supporting Information Table S1) and the mean DDV = 

17.38 ± 0.20 cm. Fork length did not differ significantly between covered and uncovered trials 

(two-sample t-test, t = 0.0877, d.f. = 469, P > 0.05), nor did DDV (two-sample t-test, t = –0.8734, 

d.f. = 469, P > 0.05). Neither water temperature (two-sample t-test, t = 0.0513, d.f. = 50, P > 

0.05) nor salinity (two-sample t-test, t = 0.1040, d.f. = 50, P > 0.05) differed significantly 

between covered and uncovered enclosures (Supporting Information Table S1). 
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After the leaping experiment, the overall mean abundance of motile C. clemensi was 1.79 

(bootstrapped 95% C.I. = 1.55–2.05), with 83.1% of fish having at least one C. clemensi motile. 

The maximum number of motile C. clemensi observed on a fish was 10 and 96% of the motile 

lice recorded on fish were C. clemensi. The mean abundance of motile L. salmonis was 0.08 

(bootstrapped 95% C.I. = 0.05–0.12), with 6.9% of the fish having at least one motile L. salmonis 

and a maximum of two observed on a single fish. The mean abundance of C. clemensi and L. 

salmonis large chalimii was 2.48 (bootstrapped 95% C.I. = 1.81–3.11) with 77.4% of fish having 

at least one large chalimus louse.  

The post-trial motile louse abundance on a fish (Figure 3 and Supporting Information 

Table S2) was best explained by whether the fish was in a covered or uncovered enclosure. The 

most parsimonious model, which included treatment as the only fixed effect, accounted for 74% 

of model support, based on AIC weights (Table 2). Although there was no clear best-fit model 

based on AIC-difference guidelines (Burnham et al., 2011), all three top models included the 

treatment term and cumulatively accounted for 97.5% of model support.  

Our treatment-only model predicted that fish in the uncovered enclosures (i.e. those 

allowed to leap) had fewer motile lice after the experiment (mean = 1.64, 95% C.I. = 1.32–2.03) 

than those in the covered enclosures (Figure 4; mean = 2.10, 95% C.I. = 1.82–2.45). There was no 

significant correlation between the number of leaps recorded over a 3 day trial and the difference 

in mean motile abundance between covered and uncovered enclosures (Pearson’s r = 0.58, P > 

0.05). 

The post-trial abundance of large chalimus (attached) sea lice on fish did not differ 

between trials where we allowed fish to leap and those where we prevented fish from leaping 

(Supporting Information Table S2). The abundance of this life stage was best explained by the 
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intercept-only model, which accounted for 74% of the model support and had an AIC score 3.68 

units lower than the next best model (Supporting Information Table S3).  

 

4 | DISCUSSION 

 

Wild juvenile salmonids leap more frequently when infected with sea lice (Grimnes & Jakobsen, 

1996; Webster et al. 2007) and our results indicate that the leaping behaviour of juvenile O. 

nerka dislodges motile stages of these ectoparasites. The vast majority of the sea lice infecting O. 

nerka in our study were C. clemensi (just 4% of motiles were L. salmonis) which is consistent 

with the emerging consensus that C. clemensi are the dominant louse species in the Inside 

Passage of BC (Price et al. 2011; Godwin et al. 2015, 2017; B. Hunt, unpublished data) despite 

the current focus of sea louse research and management on L. salmonis.  

 Preferential attachment of motile lice from outside the pens is unlikely to have generated 

the post-trial differences in motile abundance.  While it could be argued that the surface netting 

of the covered enclosures induced a stress response in the fish due to reduced light levels, 

evidence for light levels triggering stress responses in fish is equivocal (Leonardi & Klempau, 

2003, Biswas et al., 2006) as is the evidence for the effect of stress on louse susceptibility 

(Johnson & Albright, 1992; Haond et al., 2003). Similarly, there is mixed evidence for the effect 

of light intensity on the attachment and host-finding behaviour of sea lice. Experiments on L. 

salmonis have shown no light effect (Browman et al., 2004; Hamoutene et al., 2016) as well as 

both higher (Genna et al., 2005) and lower copepodid settlement (Hevrøy et al., 2003; Mordue & 

Birkett, 2009) under low light conditions. We could find no studies testing this with C. clemensi 

specifically although some studies on L. salmonis in Pacific Canada conduct infestation trials 
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under dimmed-light conditions (Jones et al., 2006b). There was no difference in salinity, 

temperature, or fish LF between treatments and it is therefore unlikely that any of these factors 

drove differences in post-trial motile louse abundance. As predicted, the abundance of large 

chalimus lice (C. clemensi and L. salmonis) did not differ between covered and uncovered 

enclosures, supporting the assumption of equivalent pre-trial louse distributions on fish and the 

conclusion that the observed difference in motile louse abundance was due to leaping by the fish. 

Finally, L. salmonis (Pike & Wadsworth, 1999) and possibly C. clemensi motiles (Kabata, 1972; 

Ho & Lin, 2004) experience brief periods of attachment between the pre-adult and adult life 

stages, during which dislodgment by leaping may be less likely. This may have resulted in a 

conservative estimate of the dislodging effect of leaping but would not influence the relative 

difference between treatments as there is no reason to suggest that the proportion of moulting 

motiles would differ between covered and uncovered enclosures.  

 The energetic costs associated with the leaping behaviour of juvenile O. nerka may be 

substantial. If the leaping frequency from the observation periods continued throughout the entire 

3 day trial, then O. nerka hosts would have to dislodge approximately 0.018 lice per leap to 

generate the observed differences in post-trial motile abundance. This success rate of less than 

2% would imply considerable energy expenditure for a fish to rid itself of even a single louse. 

The specific energetic costs associated with the leaping of juvenile O. nerka are unknown and 

represent an avenue for further study. Currently, only the metabolic costs of steady swimming 

have been measured for O. nerka (Brett, 1965), although spontaneous swimming (characterized 

by marked changes in speed and direction) has been associated with high energetic costs in 

juvenile brook trout Salvelinus fontinalis (Mitchill 1814) (Krohn & Boisclair, 1994) and leaping 

may incur similar energetic costs to spontaneous swimming. These costs may be particularly 
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demanding for juvenile O. nerka migrating through prey-limited regions like Johnstone Strait 

(McKinnell et al., 2014). Furthermore, because our behavioural observations suggest that leaping 

frequency of juvenile O. nerka is associated with feeding, leaping behaviour may be reduced in 

prey-limited regions like Johnstone Strait, leading to higher louse burdens. While leaping may 

require substantial energy, these costs may be offset by multiple potential benefits of parasite 

removal.  

By definition, parasites harm their hosts and behavioural changes of infected hosts that 

remove parasites can relieve this impairment (Hart, 1990). Several behavioural adaptations of 

hosts avoiding infection by pathogens and parasites have been demonstrated, including 

individual evasion behaviours and population migration patterns (Mikheev & Pasternak, 2006). 

For example, specific shoaling patterns of juvenile sticklebacks Gasterosteus spp. L. 1758 

minimize the risk of infestation by a crustacean ectoparasite, Argulus canadensis and rainbow 

trout Oncorhynchus mykiss (Walbaum 1792) experience lower rates of eye-fluke establishment 

by avoiding an infestation source (Karvonen et al., 2004). There are many examples of 

behavioural patterns of terrestrial hosts that remove parasites once infested (Tanaka & Takefushi, 

1993; Cotgreave & Clayton, 1994) and the leaping behaviour of juvenile O. nerka may be a 

marine example, akin to the reactive fly-repelling behaviour of terrestrial herbivores (e.g. 

twitching, stamping, etc), which is an effective parasite removal strategy (Hillerton et al, 1986). 

The post-infestation behavioural removal of lice complements recent work showing that juvenile 

Salmo salar L. 1758 behaviour (including leaping) is associated with a 26–31% decrease in 

copepodid infestation (Bui et al., 2017a), underlining the important role host behaviour plays 

both pre and post-infestation (Daly & Johnson, 2011; Bui et al., 2017b). It is beyond the scope of 

this study to assess whether O. nerka leaping at the juvenile life stage is an evolutionary 
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adaptation to ectoparasites, but if it were, the benefits of leaping would have to outweigh the 

costs.   

 The trade-offs underlying the leaping behaviour of juvenile salmonids imply that 

the costs of leaping yield a benefit of alleviating juvenile salmonids from the costs of sea-lice 

infestation. For example, heavy sea-louse infestation (primarily by C. clemensi) is correlated 

with reduced growth (Godwin et al., 2017) and competitive foraging ability (Godwin et al., 

2015) in O. nerka and with decreased survival in other Oncorhynchus spp. (Morton & 

Routledge, 2005; Ford & Meyers, 2008; Krkošek & Hilborn, 2011). Sea-lice removal may 

release hosts from future energetic costs associated with impaired swimming performance due to 

infestation (Wagner et al. 2003; Mages & Dill 2010; Nendick et al. 2011). In exchange for those 

benefits of dislodging lice, juvenile salmonids pay the energetic cost of leaping as well as non-

energetic costs such as increased predation risk from spending more time at the water’s surface 

(Collis et al., 2001). Accordingly, the costs associated with leaping may represent another 

example of a sub-lethal effect of sea lice (primarily C. clemensi) on Oncorhynchus spp. When 

combined with other studies showing that sea-lice infestation is associated with increased leaping 

frequency of juvenile Oncorhynchus spp. (Grimnes & Jakobsen, 1996; Webster et al., 2007), our 

results suggest that fish may use behavioural plasticity to balance costs and benefits of leaping 

and parasite dislodgement. 

The question why do fish leap has stimulated (and continues to stimulate) hypotheses, 

many of which have yet to be tested. The common leaping behaviour of juvenile Oncorhynchus 

spp. may be driven by multiple factors, but the leaping experiment presented in this study 

indicates that one motivation may be to remove ectoparasites such as sea lice.  
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TABLE S1 Mean (± S.E.) Oncorhynchus nerka fork length, temperature and salinity values from 

the two covered enclosures and two uncovered enclosures in each collection. Temperature and 

salinity measurements were taken at dawn over the course of the 3 day period. The number of 

temperature and salinity measurements per trial ranged from 1-6 due to limited availability of 

equipment. Trials with only one measurement do not have associated error values. 
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TABLE S2 Mean number of motile lice per Oncorhynchus nerka  and bootstrapped 95% C.I. 

following each 3 day trial. 

TABLE S3 Statistics from generalized mixed-effects models fit to post-trial large chalimus louse 

abundance data from the Oncorhynchus nerka leaping experiment. Models contained 

combinations of two fixed effects: whether fish were in a covered or uncovered enclosure 

(treatment) and the enclosure in which the fish were held (enclosure). All models included a 

random effect on the intercept for collection number, and models including treatment as a fixed 

effect included an associated random effect for collection number. Models with interaction terms 

include all lower-order effects, and all models include an intercept term.  
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FIGURE 1 The study area, collection site, and experiment site for the Oncorhynchus nerka 

leaping experiment. All collections were made at Bauza Cove, BC, off the north-eastern coast of 

Vancouver Island, and the trials were conducted at a floating research facility off Gilford Island. 
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FIGURE 2 An example set-up of the Oncorhynchus nerka leaping experiment for one collection 

(four trials). Four flow-through net pen enclosures were housed at a floating research facility in 

the orientation shown. The surface netting for the covered enclosures was secured approximately 

10 cm below the water, and was raised at two ends of the enclosure to create 30 cm gaps in 

which the fish could surface for air for their swim bladders. 
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1 Change COVERED to Covered and UNCOVERED to Uncovered. 

 

FIGURE 3 Combined total frequency distributions of post-trial abundance of motile sea lice (L. 

salmonis and C. clemensi) on juvenile Oncorhynchus nerka held either in uncovered pens that 

allowed leaping or covered nets that prevented leaping.  
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FIGURE 4 Mean (± 95% C.I.) post-trial abundances of motile sea lice (L. salmonis and C. 

clemensi) on juvenile Oncorhynchus nerka in each of 24 trials with uncovered pens that allowed 

leaping or covered nets that prevented leaping. - - - (covered, 1.64 ± 95% C.I. of 1.32–2.03) and - -  

- (uncovered, 2.10 ± 95% C.I. of 1.82–2.45) estimated mean from the top model (Table 2).  

 

 

TABLE 1 Collection data for juvenile Oncorhynchus nerka used in the leaping experiment. 

Temperature and salinity measurements were taken 1 m below the surface of the water for three 

of the six collections. 

          

Covered  

Enclosures 

––––––––––––––– 

Uncovered  

Enclosures 

–––––––––––––––– 

Colle

ction 

 

Date 

 

Temper

ature 

 (
o
C) 

Sali

nity  

 

Number of O. 

nerka transported 

Number 

of fish 

Number 

of fish 

Number 

of fish 

Number 

of fish 

1 

31-

05-

16 - - 95 23 22 23 22 

2 

05-

06-

16 - - 91 19 24 21 22 

3 

09-

06- 9.9 31.8 88 22 23 21 22 
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16 

4 

13-

06-

16 - - 75 18 18 18 18 

5 

18-

06-

16 10.3 31.8 66 17 16 17 16 

6 

23-

06-

16 10 30.9 79 19 19 19 19 

 

TABLE 2 Statistics from generalized mixed-effects models fit to post-trial motile louse 

abundance from the Oncorhynchus nerka leaping experiment. Models contained combinations of 

two fixed effects: whether fish were in a covered or uncovered enclosure (treatment) and the 

enclosure in which the fish were held (enclosure). All models included a random effect on the 

intercept for collection number, and models including treatment as a fixed effect included an 

associated random effect for collection number. Models with interaction terms include all lower-

order effects, and all models include an intercept term.  

Rank Model ΔAIC  wi Cumulative wi 

1 treatment 0 0.740 0.740 

2 treatment + enclosure 2.54 0.208 0.948 

3 treatment x enclosure 6.64 0.027 0.975 

4 intercept only 7.68 0.016 0.991 

5 enclosure 8.82 0.009 1 

ΔAIC values are the differences in AIC from the top model; wi , the Akaike model weight. 
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